
1

Soft-Decision Reed-Solomon Decoding on Partial

Response Channels

Michael K. Cheng∗, Jorge Campello†, and Paul H. Siegel∗,

*Center for Magnetic Recording Research,

University of California, San Diego, La Jolla, CA 92093

†Hitachi Global Storage Technologies, San Jose, CA 95193

{kcheng, psiegel}@ucsd.eduand jorge.campello@hgst.com

Abstract

We compare the performance of list-type soft-decision Reed-Solomon (RS) decoding algorithms to that of clas-

sical hard-decision RS decoding algorithm on Partial Response (PR) channels. The two soft-decision RS decoding

approaches that we consider, the List-GMD and the Koetter-Vardy algorithm, are both based on Guruswami-Sudan’s

(polynomial) interpolation approach to polynomial-time list-decoding. The soft-decision RS decoders take as input

symbol-based reliabilities which can be provided by a symbol-based BCJR algorithm. The symbol-based BCJR

algorithm is an extension of the original BCJR algorithm andcalculates thea posteriori probability(APP) of a

block of l-bits. The complexity of the algorithm can be reduced when applied to a PR channel. We present a hybrid

Viterbi-BCJR approach that can be used when only the reliability of the most-likely symbol is desired. The hybrid

approach calculates the APP of the most reliable symbol without the need to run the complete forward and backward

algorithm. We demonstrate through simulations that soft-decision RS decoding will lead to a lower probability of

decoding error. We calculate the complexity of the list-decoding algorithms and quantify the performance and

complexity tradeoff for each approach. Moreover, we show that using the symbol-based APPs will yield a lower

word error rate (WER) than using the measures obtained by multiplying the bit reliabilities.

Index Terms -Soft-decision Reed-Solomon decoding, Partial Response channel, List-GMD, Koetter-Vardy

decoding, Guruswami-Sudan list-decoding, Symbol-wise APP, Symbol-based BCJR, Hybrid Viterbi-BCJR

This work was supported by the Information Stroage IndustryConsortium (INSIC) and the Center for Magnetic Recording Research
(CMRR), UCSD.

2

I. INTRODUCTION

We consider a discrete memoryless source that is transmitted over a channel affected by inter-symbol

interference (ISI) and additive white Gaussian noise (AWGN.) A specific scenario is the magnetic recording

channel. To combat ISI in this channel, we typically use an equalizer to modify the channel read-back

signal into a pre-determined partial response (PR) target [1, Chapter 9]. The equalized magnetic recording

channel is also known as a PR channel and specified by a PR polynomial. For maximum likelihood

detection, we can use the Viterbi algorithm applied to the trellis corresponding to the PR polynomial.

In a magnetic recording system, we often employ a concatenated coding scheme where the “inner code”

is the PR channel and the outer code is an algebraic block code[2, Chapter 4]. Partial Response Maximum

Likelihood (PRML) [1, Chapter 9] is a detection technique used to select the most-likely bit-sequence

out of the inner channel and an algebraic outer code such as the Reed-Solomon (RS) code is used for the

residual errors.

The classical bounded-distance RS decoder correctly decodes to a unique codeword if the number of

errorst is less than half the minimum distanced. The initial concept of “list-decoding” was introduced

independently by Elias and Wozencraft [3], [4]. List-decoding is a technique that, for a given received

vectorv, efficiently generates a list of codewords within a Hamming distanceτ from v, whereτ is greater

than or equal tot. Guruswami and Sudan [5], [6] were the first to develop an approach that solves the list-

decoding problem in polynomial time. Their approach to list-decoding consists of polynomial interpolation

and factorization. In Section II, we present the List-GMD algorithm which combines Guruswami and

Sudan’s list-decoding with Forney’s [7, Chapter 3] Generalized Minimum Distance (GMD) decoding into

a sequential erasure list-decoding attempt at soft-decision Reed-Solomon decoding. Koetter and Vardy

[8] have also developed a soft-decision algebraic decodingalgorithm for RS codes based on Guruswami

and Sudan’s polynomial interpolation. Both the List-GMD and the Koetter-Vardy algorithm take as inputs

symbol-wise reliability information (or APPs) from the inner PR channel. One way to approximate the

symbol-wise APPs is to apply the original BCJR algorithm [9]to the inner channel and multiply the bit

APPs that form a symbol. However, in using the bit-product approach, we may include invalid trellis

paths in the calculation. In general, to get reliabilities for l-bit symbols we are interested in

Pr
(
uk

k−(l−1) = ϕ | RN
1

)
, ∀ϕ ∈ {0, 1}l , (1)

3

and for allk = il, i = 1, 2, · · · . This could be done by first calculating

Pr
(
uN

1 | RN
1

)
(2)

and then obtaining thel-dimensional marginals

Pr
(
uk

k−(l−1) = ϕ | RN
1

)
=

∑

uN
1 ∈{0,1}N :uk

k−(l−1)
=ϕ

Pr
(
uN

1 | RN
1

)
(3)

for ϕ ∈ {0, 1}l. We could obtain the single bit marginals by

Pr
(
ui = b | RN

1

)
=

∑

uN
1 ∈{0,1}N :ui=b

Pr
(
uN

1 | RN
1

)
(4)

It is, however, infeasible to compute the conditional distribution Pr
(
uN

1 | RN
1

)
because the number of

points in the probability distribution is exponential inN .

The symbol-based BCJR, much like the bit-based BCJR, uses the Markov properties of the source to

get around the exponential complexity of calculating thel-dimensional marginals. Note that we cannot

compute thel-dimensional marginals from the product of the single-bit marginals and therefore, we cannot

multiply the bit APPs to calculate the symbol APPs.

To correctly calculate thel-dimensional marginals and, thus the symbol-wise APPs, we discuss a symbol-

based BCJR algorithm in Section III. Our method uses the conventional bit-based trellis as in [9] and only

modifies the manner in which the probability functions are updated when compared to the original BCJR

algorithm. Hoeher [10] was the first to develop a method of calculating thea posteriori probabilityof a

block of l consecutive bits. We however provide a description and derivation that is aimed at applications in

the magnetic recording channel. We show through a concrete example that simplifications of the algorithm

can be made for the case of binary-input ISI channels. We alsoextend Hoeher’s work by introducing

a reduced-complexity hybrid Viterbi-BCJR algorithm that calculates the reliability for the most-likely

symbol. In Section IV, we calculate the complexity of the Guruswami-Sudan (G-S), Koetter-Vardy (K-V),

and classical Berlekamp-Massey (B-M) decoding algorithmsand compare the number of multiplications

required to decode a codeword for each technique as a function of the code rate. In Section V, we

provide simulation results that demonstrate the performance improvement of soft-decision RS decoding

over hard-decision decoding. We also quantify the extra computation that is required to obtain the extra

improvement. Moreover, we show that using the APPs calculated by the symbol-based BCJR algorithm

4

as input to the soft RS decoders will produce a lower WER than using the product of bit reliabilities.

These results can help evaluate applications of soft-decoding RS list-decoding on practical systems.

II. SOFT-DECISION REED-SOLOMON DECODING ALGORITHMS

A. Generalized Minimum Distance (GMD) decoding

Decoding using soft information improves performance. Forney’s GMD decoding [7, Chapter 3] was an

early approach at using soft channel information in the decision process. GMD decoding takes as inputs the

quantized received vectorv = {v1, v2, · · · , vn} and its associated reliability vectorr = {r1, r2, · · · , rn},

where0 ≤ ri ≤ 1 and1 ≤ i ≤ n. Each symbolvi in the received vectorv has a corresponding reliability

ri. Denotec = {c1, c2, · · · , cn} to be a lengthn codeword and define

f (x̂, x) =

+1

−1

x = x̂

x 6= x̂
(5)

and

r · c =
n∑

i=1

rif (vi, ci) . (6)

Forney proved in [7, Theorems 3.1]

Theorem 1:There is at most one codewordc from a code of lengthn and minimum distanced for

which

r · c > n − d (7)

We can sort the reliabilities in order of increasing magnitude; that is,

ri1 ≤ ri2 ≤ · · · ≤ ris ≤ · · · ≤ rin. (8)

Define the indicator vector asqs = {qs (r1) , qs (r2) , · · · , qs (rn)}, where1 ≤ s ≤ n and

qs

(
rij

)
=

0,

1,

1 ≤ j ≤ s;

s + 1 ≤ j ≤ n
(9)

Forney proved in [7, Theorems 3.2]

Theorem 2:If r · c > n − d, then for somes, qs · c > n − d.

GMD decoding performs a series of erasures-and-errors hard-decision decoding onv by erasing thes

least reliable symbols according tor [7, Chapter 3.2]. If a codeword satisfies the GMD criterion of(7),

5

it will be the unique codeword that does so and be found by the algorithm.

B. List-GMD decoding

List-GMD decoding is a combination of G-S list-decoding andForney’s GMD decoding [11]. The

algorithm takes as inputs a received vectorv and its associated reliability vectorr which can be calculated

by, for example, the symbol-based BCJR or the hybrid Viterbi-BCJR algorithms to be discussed in Section

III.

The List-GMD algorithm is as follows:

1) For s = 0, · · · , d − 1 do

a) for each zero position inqs, erase the corresponding positioned symbol inv. Denote this

vector withs erased symbolsvs.

b) perform erasures-and-errorsG-S list-decoding on vs thus generating a list of candidate

codewords for each decoding trial.

2) Select the most likely codeword from the union of the lists output by the decoding trials.

For an(n, k, d) Reed-Solomon code withs erasures, the error correction bound of G-S erasures-and-errors

decoding is given by [6, Theorem 16]:

τ(s) < (n − s) −
√

(n − s) (k − 1); (10)

that is, we can correct up toτ(s) errors when we apply erasures-and-errors list-decoding toa received

vectorv with s symbols erased. List-GMD decoding will perform a series of list-decodings and attempt

to correct up toτ(s) errors and fill ins erasures fors ∈ [0, · · · , d − 1].

We can skip unnecessary List-GMD trials by using the relations given in an errors-erasures table. For

example, Table I provides the list errors and erasures decoding combination for the(5, 2, 4) extended

Reed-Solomon code overGF (5). The list of codewords generated by the 2-erasures case willcontain all

codewords produced by the 1-erasure case, because the two cases differ by an erasure which can always

be filled-in correctly. To run List-GMD on a received vector,we only have to run the algorithm once for

every value ofτ (s). For the cases where multiples evaluate to the sameτ (s), we only have to list-decode

the case with the largestτ (s) + s combination. Moreover, the errors-erasures table only depends onn,

k, and s. So we would only have to generate the table once for each codebefore we begin List-GMD

decoding.

6

s τ (s)
0 2
1 1
2 1
3 0

TABLE I

ERRORS-ERASURES TABLE FOR THE(5, 2, 4) REED-SOLOMON CODE

List-GMD decoding can be computationally intensive because the algorithm involves a series of list-

decodings. We can derive a Forney-like bound and use this lower bound to estimate the algorithm’s

performance. The minimum List-GMD threshold can be shown [12] to be

r · c ≥ min
s

τ(s)∑

j=1

−rij +

n−s∑

j=τ(s)+1

rij −
n∑

j=n−s+1

rij

 (11)

for s ∈ [0, 1, · · · , d − 1]. Any τ (s)-consistent codeword will have an inner product greater than or equal

to (11).

C. The Koetter-Vardy algebraic soft-decision decoding

Koetter and Vardy [8], [13], [14] developed a polynomial-time soft-decision decoding algorithm based on

G-S list-decoding. Koetter and Vardy’s approach uses polynomial interpolation with variable multiplicities

while Sudan’s technique uses polynomial interpolation with fixed multiplicities. For an(n, k, d) RS code

defined overGF (q), the Koetter-Vardy (K-V) algorithm generates a sizeq × n multiplicity matrix M =

{mi,j}, i = 1, · · · , q andj = 1, · · · , n, from channel posterior probabilities for a maximum possible q · n

interpolation points. The allocation of multiplicities inthe q×n matrix M is done by a greedy algorithm

[14, algorithm A]. Each entry inM can be a different non-negative integer. G-S list-decodingcan be

viewed as a special case of the K-V algorithm with a multiplicity matrix M that consists of one and

only one nonzero entry in each column and each entry has the same value. The K-V approach allows the

more reliable entries inM to receive higher multiplicity values and this yields the potential for improved

performance.

The complexity of the K-V algorithm depends on the Cost of themultiplicity matrix, defined by Koetter

and Vardy [14] as

C (M) ,
1

2

q∑

i=1

n∑

j=1

mi,j (mi,j + 1) . (12)

7

Let C = C (M). The computation of the interpolating polynomialQM (X, Y) is equivalent to solvingC

linear equations. A straightforward method of solving forQM (X, Y) is Gaussian Elimination, however, its

complexity is on the order ofO (C3). In Section IV-A, we discuss Koetter’s fast interpolation technique

that will reduce the complexity toO (LC2) where L ≪ C. Nielsen [15], Olshevsky and Shokrollahi

[16] also have proposed different reduced complexity methods of finding QM (X, Y) that are on the

order ofO (κC2) whereκ is a constant. The computational complexity of Koetter-Vardy’s algebraic soft-

decision decoding can therefore be high. Thus, we would liketo use a threshold condition to estimate its

performance.

Koetter and Vardy provided a threshold condition for simulation in their paper [14, Corollary 5]. Given

a codewordc, define[c] as aq × n matrix. Let each row index of[c] represent an elementζi ∈ GF (q);

then [c]i,j = 1 if cj = ζi and [c]i,j = 0 otherwise. Define the score as

SM (c) = 〈M, [c]〉 =

q∑

i=1

n∑

j=1

mi,jci,j (13)

Koetter and Vardy proved thatQM (X, Y) has a factorY − f (X), wheref (X) evaluates toc, if

SM (c) ≥
√

2 (k − 1)C. (14)

The threshold condition of (14) is not tight; that is, codewords that do not satisfy (14) may still be in the

K-V output list.

III. A MODIFIED BCJRALGORITHM FOR NON-BINARY SYMBOLS

A. Description and derivation

Let ϕ ∈ GF (2l) be an information symbol. There arel bits per symbol and we can map each symbol in

GF (2l) to a distinct bit pattern; that is,ϕ , (bl−1, bl−2, · · · , b0), wherebi ∈ GF (2). Let u , uk
k−(l−1) be

the information symbol mapped to the input bit sequence fromtime k− (l−1) to timek. Fig. 1 illustrates

the index labeling. Thea posteriori probabilitythat the information symbolu equalsϕ conditioned on

8

the lengthN received sequenceRN
1 is:

Pr
(
u = ϕ | RN

1

)
= Pr

(
uk−(l−1) = bl−1, · · · , uk−1 = b1, uk = b0 | RN

1

)

=
p
(
uk−(l−1) = bl−1, · · · , uk = b0, R

N
1

)

p (RN
1)

(15)

=
1

p (RN
1)

∑

s

∑

s′

p
(
u = ϕ, sk = s, sk−l = s′, RN

1

)
(16)

The equivalence in (15) is obtained using Bayes’ rule and (16) is obtained using the principle of total

probability. The joint pdf can be rewritten as

p
(
u = ϕ, sk = s, sk−l = s′, RN

1

)

= p
(
u = ϕ, sk = s, sk−l = s′, Rk−l

1 , Rk
k−(l−1), R

N
k+1

)
(17)

= p
(
RN

k+1 | u = ϕ, sk = s, sk−l = s′, Rk−l
1 , Rk

k−(l−1)

)

·p
(
u = ϕ, sk = s, sk−l = s′, Rk−l

1 , Rk
k−(l−1)

)
(18)

= p
(
RN

k+1 | sk = s
)

·p
(
u = ϕ, sk = s, sk−l = s′, Rk−l

1 , Rk
k−(l−1)

)
(19)

= p
(
RN

k+1 | sk = s
)

·p
(
u = ϕ, sk = s, Rk

k−(l−1) | sk−l = s′, Rk−l
1

)

·p
(
sk−l = s′, Rk−l

1

)
(20)

= p
(
RN

k+1 | sk = s
)

·p
(
u = ϕ, sk = s, Rk

k−(l−1) | sk−l = s′
)

·p
(
sk−l = s′, Rk−l

1

)
(21)

= βk(s) · γϕ

(k−(l−1),k)(s
′, s) · αk−l(s

′) (22)

The termβk(s) is called the backward state metric, the termγϕ

(k−(l−1),k)(s
′, s) is called the branch transition

probability, and the termαk−1(s
′) is called the forward state metric [17, Chapter 2]. Going from (17) to

(18) and from (19) to (20) we apply Bayes’ rule to the joint probabilities. Going from (18) to (19) and

from (20) to (21) we apply to the conditional probabilities the Markov property that events after timek

only depend on the current statesk and are independent of past observations.

9

one symbol duration, l bits

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

u
k−(l−1)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

�� �� ��

u
k

u
k−1

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

������������������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������ ������������

u
k−(l−2)

u
k−(l−3)

kk−1k−l k−(l−1) k−(l−2) k−(l−3) k−2

s’

s

Fig. 1. A simple 2-state trellis to illustrate the indices used in the symbol-based APP derivations. The input bit sequence ϕ ,

(bl−1, bl−2, · · · , b0) is marked by the highlighted path.

The branch transition probability can be expanded as

γϕ

(k−(l−1),k) (s′, s) = p
(
u = ϕ, sk = s, Rk

k−(l−1) | sk−l = s′
)

(23)

= Pr (u = ϕ | sk−l = s′)

·p
(
sk = s, Rk

k−(l−1) | u = ϕ, sk−l = s′
)

(24)

= Pr (u = ϕ)

·Pr (sk = s | u = ϕ, sk−l = s′)

·p
(
Rk

k−(l−1) | sk = s, u = ϕ, sk−l = s′
)

(25)

From (23) to (24) we apply Bayes’ rule in the following form:

p(x, y | z) = p(x | z) · p(y | x, z) (26)

where thex term is “u = ϕ,” the y term is “sk = s, Rk
k−(l−1),” and thez term is “sk−l = s′.” From

(24) to (25) we again apply Bayes’ rule of (26) to the pdfp
(
sk = s, Rk

k−(l−1) | u = ϕ, sk−l = s′
)

. Also

notice that the symbola priori probability is state-independent and therefore,Pr (u = ϕ | sk−l = s′) is

equivalent toPr (u = ϕ). The second probability term in (25) is either a zero or one i.e.,

Pr (sk = s | u = ϕ, sk−l = s′) =

1, if states at timek is connected

to states′ at timek − l

via the input sequenceu = ϕ;

0, otherwise.

(27)

10

Therefore,

γϕ

(k−(l−1),k) (s′, s)

=Pr (u = ϕ) · p
(
Rk

k−(l−1) | sk = s, u = ϕ, sk−l = s′
)

(28)

if states′ at timek − l and states at timek are connected through the input sequenceu = ϕ. The pdf

p
(
Rk

k−(l−1) | sk = s, u = ϕ, sk−l = s′
)

is a function of the channel characteristic; in a partial response

channel with AWGN the pdf can be calculated as:

(
1√
2πσ

)l

e
−

Pl−1
i=0(Rk−i−ci)

2

2σ2 (29)

whereσ2 is the noise variance and(cl−1, cl−2, · · · , c0) is the partial response channel output sequence that

corresponds to the input sequenceϕ , (bl−1, bl−2, · · · , b0).

The forward state metricαk(s)

αk(s) =
∑

s′

αk−1(s
′) · γk (s′, s) (30)

and the backward state metricβs (s)

βk (s) =
∑

s′

βk+1(s
′) · γk+1(s, s

′) (31)

can be updated as in the original BCJR [9].

B. Simplification for ISI channels

There are simplifications that can be made for the case of binary-input ISI channels in order to save

on complexity. The simplifications come from the fact that the states represent subsequences of the

input sequence. To illustrate this point, consider the so-called E2PR4 channel, with transfer function

h (D) = (1 − D) (1 + D)3. This channel has a memory ofν = 4 and, thus a 16-states trellis representation.

We calculate thea posterioriprobability of the all-zeros 8-bit byte ending at timek:

Pr
(
u = 0 | RN

1

)
=

1

p (RN
1)

∑

s

∑

s′

p
(
u = 0, sk = s, sk−8 = s′, RN

1

)
(32)

The joint pdf can be expressed as:

11

D
2

D
3

D 4

...0000 0 0 0 0

D

Current State: 0000

Input: 00000000

−21 2

E2PR4 Polynomial: 1 + 2D − 2D − D

−1

3 4

Fig. 2. E2PR4 Shift-Register Configuration

p
(
u = 0, sk = s, sk−8 = s′, RN

1

)
= αk−8 (s′) γ00000000

(k−7,k) βk (s) (33)

Since there is exactly ones that is reached froms′ through the all-zeros symbol, the double sum in (32)

becomes a single sum. Define the set of states to beS = {S0, S1, . . . , S2ν−1}. For the all-zeros symbol,

the ending states at timek has to beS0, so the sum is simply over all starting statess′ at timek − 8.

The number of states per stage for the E2PR4 channel isS = |S| = 16 so there will be 16 terms in the

sum. Each term takes 2 multiplications (one forα, and the other forβ) plus the 8 multiplications for

calculating theγ. The result is a total of

Ngeneral = (2 + 8) S + (S − 1) = 175

operations.

For a binary input ISI channel, we notice that the state is determined by a string of lengthν input bits.

In Figure 2, we see that the channel state is forced back to theall-zeros state after the firstν = 4 bits

of the all-zeros byte are shifted into the channel, regardless of the starting statem′. Therefore, we can

rewrite (33) as

p
(
u = 0, sk = s, sk−8 = s′, RN

1

)
= αk−4 (S0) γ0000

(k−3,k) (S0, S0) βk (S0) (34)

The number of operations in (34) is 2 multiplications (one for α, and the other forβ) plus the 4

multiplications for calculating theγ. The total is therefore,

NISI = 2 + 4 = 6

operations. There is a factor of175/6 ≈ 29 reduction in complexity. In general, for a channel with memory

12

ν, we can calculate the joint pdf as:

p
(
u = ϕ, sk = s, sk−l = s′, RN

1

)

= p
(
u =

(
bl−(ν+1), · · · , b0

)
, sk = s, sk−(l−ν) = s′′, RN

1

)

= αk−(l−ν) (s′′) γ
(bl−(ν+1),··· ,b0)
(k−(l−(ν+1)),k) (s′′, s)βk (s) (35)

wheres′′ is the state that corresponds to the shift register configuration after an input ofν bits.

As a result, we would only need

NISI = 2 + (l − ν)

operations, as opposed to

Ngeneral = (2 + l) 2ν + (2ν − 1)

operations.

C. The Hybrid Viterbi-BCJR algorithm

If we are only interested in the most-likelyl-bit symbol, we can apply a variation of the symbol-based

BCJR to further save on complexity. The procedure consists of (i) running the forward updates until the

time instancek − (l − ν); (ii) running the backward updates until the symbol boundary at time k; (iii)

applying the Viterbi algorithm starting at timek with the initial metricβ and working our waybackwards

to timek−(l−ν); (iv) multiplying the Viterbi metric for each state at timek−(l−ν) by the corresponding

α and choosing the state with the largest product. Since this procedure incorporates aspects of both the

Viterbi algorithm and the BCJR algorithm, we call it the Hybrid Viterbi-BCJR algorithm.

The details of the algorithm are described below. It is assumed that we have a trellis for an ISI channel

with memoryν; that is, there are2ν states that are in one-to-one correspondence with all2ν possible

binary strings of lengthν.

THE ALGORITHM

The BCJR Phase

Run the BCJR algorithm storing the forward metricsα at the time instancesk−(l−ν) and the backward

metricsβ at time instancesk, wherek = il, i = 0, 1, 2, . . . , Ns andNs is the number of symbols to be

detected.

13

The Viterbi Phase

1) Initialization The backwards Viterbi metrics at timek, µk, are initialized with the BCJRβ’s at

time k; that is,

µk(Si) = βk
i , i = 0, 1, . . . , 2ν − 1. (36)

2) Propagation (The Viterbi Phase)

For each states′ ∈ S at timej = k − 1, k − 2, . . . , k − (l − ν).

a) Calculate the accumulated branch metric for the two edgesconnecting states′ at time j to a

state at timej+1. Let the two states at timej+1 that connect tos′ bes0 ands1 corresponding

respectively to the edges with labels0 and1. The accumulated branch metrics are given by

µ̃b
j(s

′) = γb
(j,j+1)(s

′, sb)µj+1(sb), b = 0, 1. (37)

b) Compare the two accumulated branch metrics and select thelargest. Let us say that the selected

branch has labelb∗.

c) Update the state metric and the survivor sequenceq. In qj(s) we store the state at timej + 1

corresponding to the sequence of largest metric starting attime k (with metrics given by the

β’s) and ending at states at timej. The update equations are

µj(s
′) = µ̃b∗

j (s′) (38)

qj(s
′) = sb∗ (39)

3) Termination

For each state at timek − (l − ν), calculate the overall state metrics,λ(Si), as

λ(Si) = µk−(l−ν)(Si)αi (40)

Find the states∗ with the largest overall metric. The most-likelyl-bit symbol,ϕ∗, made up of bits

from positionsk − l + 1 to k is given by theν bits corresponding to states∗ followed by thel − ν

bits obtained by reading off the edge labels from the survivor sequenceqk−(l−ν)(s
∗). The probability

of the most-likely symbol is given by

Pr(ϕ∗|RN
1) = λ(s∗)/p(RN

1), (41)

14

andp(RN
1) is obtained from the forward portion of the BCJR algorithm [9].

In the description of the algorithm, the BCJR and Viterbi phases are separated for ease of understanding.

In practice, to reduce both the latency and the memory requirements, the backward BCJR propagation

and the Viterbi algorithm can be performed in parallel.

IV. COMPLEXITY ANALYSIS

In order to provide a complete tradeoff analysis of the list decoding algorithms. We calculate the

complexity of Guruswami-Sudan (G-S), Koetter-Vardy (K-V), and Berlekamp-Massey (B-M) algorithms

by estimating the number of multiplies required to decode an(n, k) RS codeword for each technique as

a function of the code rate.

A. G-S list-decoding

The maximum error radius of G-S decoding is given by [6]

τ < n −
√

n (k − 1).

The multiplicity required To decode to the maximumτ is

m =

(k − 1) n +

√
n2 (k − 1)2 − 4 (σ2 − n (k − 1))

2 (σ2 − n (k − 1))

 ,

whereσ = n − τ . The Cost (or number of linear equations) required to solve for a codeword given the

parameters is

C = n

 m + 1

2

 .

The solution can be found by inverting aC × (C + 1) matrix. If Gaussian Elimination is used, the

complexity will be on the order ofO (C3) or C3 multiplies. This number can be reduced by using

Koetter’s faster interpolation [18].

Koetter’s approach, given in Fig. 3, is a recursive procedure that constructs the interpolating polynomial

Q (x, y). The algorithm starts with a set ofL+1 basis polynomialsG0 =
(
1, y, y2, · · · , yL

)
and recursively

updates each polynomial in the set forC iterations. At each iterationi, the set of polynomialsGi =

(gi,0, gi,1, · · · , gi,L) is partitioned into two: the elements that satisfy the next,or Dth
i+1, Hasse derivative

[18], [19] evaluation constraint,J0, and the elements that do not,J1. If all elements satisfy the(i + 1)th

15

Fig. 3. The Koetter fast interpolation algorithm.

constraint, assignGi+1 = Gi and incrementi; otherwise, enter into the sub-loop to update [18] each

element in the set depending on one of three conditions. The polynomial f is one with the smallest

(1, k − 1) weighted degree [6] inJ1 andj∗ is its index. McEliece showed [18] at the end ofC iterations,

each element in the listGC = (gC,0, gC,1, · · · , gC,L) will satisfy all C linear constraints. We select

the polynomial with the minimum degree to beQ (x, y). Koetter’s algorithm, therefore, has an overall

complexity ofO (LC2) because there areC iterations with each havingC +1 operations to update one of

L+1 bases. The numberL is much less thanC and the saving in complexity versus Gaussian Elimination

is clear. Another description of Koetter’s fast interpolation can be found in [20].

The Roth and Ruckenstein algorithm [21] is used to factorQ (x, y) into candidate codeword polynomials.

The approach has a complexity ofO
((

ℓlog2ℓ
)
k (n + ℓlogq)

)
, whereℓ ≤ L is the maximumy degree of

Q (x, y), and is much less thanO (LC2). The G-S algorithm, thus, would take aboutO (LC2) multiplies

to decode a codeword.

16

Algorithm 1 An approach to approximate the least Cost required to K-V decode a codeword.
1) Initialization: i = 0, S = 0, ∆ = 0, σ = n − τ , M = [m0, m1, · · · , mn−1] = [0, 0, · · · , 0]
2) While S ≤ ∆,

a) mmod(i,n) = mmod(i,n) + 1;
b) S =

∑σ−1
l=0 ml;

c) C =
∑n−1

l=0

(
ml + 1

2

)
;

d) ∆ =
√

2 (k − 1)C;
e) i = i + 1;

3) ReturnS, C, andM;

B. K-V soft-decision list-decoding

The actual Cost to K-V decode varies with many factors such asthe code parameters, the channel

decoder, and the the channel SNR. We avoid the need to track somany variables and therefore, estimate

the K-V complexity by Algorithm 1. This approach is in fact a measure of the G-S algorithm but with

weighted multiplicities.

To describe the algorithm, we first perform a hard-decision on the reliability matrix by selecting the

most reliable symbol at each of then received positions. Assume that there areτ errors in the received

vector and they all occur at the lastτ positions of the received word. In a round-robin fashion we allot

multiplicity to each of then positions and continue to do so until the Score of the received word is larger

than ∆ =
√

2 (k − 1)C. This C can be considered as the minimum Cost required to successfully K-V

decode. We again can use Koetter’s fast interpolation to findQ (x, y).

C. The Berlekamp-Massey decoding

The complexity of the Berlekamp-Massey algorithm as given in [22, Figure 7.7] is on the order of

O (t (n + 4t)).

D. Complexity comparison

We plot the number of multiplications required to decode a codeword overGF (256) versus the code

rate for the three algorithms discussed in Fig. 4. The top figure plots the gain in error radiusτ − t in

using G-S list-decoding versus classical decoding. We see that the extra error correcting power of G-S

list-decoding diminishes with increasing code rate. The bottom figure plots the number of multiplications

required to decode a codeword. We notice that G-S decoding tothe maximumτ requires many order of

magnitude more computations than B-M decoding over all rates, but K-V list-decoding has a comparable

17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

τ−
t

n=255 over GF(256)

τ−t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
10

10
20

10
30

rate

m
ul

tip
lic

at
io

ns
 p

er
 c

od
ew

or
d

G−S: O(LC2)
K−V (estimate)
B−M: O(t(n+4t))

Fig. 4. Comparing the complexity of G-S, K-V, and B-M algorithms required to decode a codeword overGF (256).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−8

10
−6

10
−4

10
−2

rate

L/
C

os
t

N=255 over GF(256)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−8

10
−6

10
−4

10
−2

10
0

rate

L/
C

os
t

L/Cost ratio for G−S

L/Cost ratio for K−V

Fig. 5. L vs. C.

complexity to B-M for rates less than 1/3. This indicates that K-V decoding is an efficient alternative

to B-M decoding at low rates and without a compromise in performance if the symbol reliabilities are

accurate. The complexity of K-V decoding, however, converges to G-S decoding with increasing rate. The

tradeoff between complexity and performance for list-decoding at high rates is small.

To verify that the number of basis polynomialsL is in fact, much smaller thanC, we plot their ratio in

Fig. 5. This ratio also indicates the savings in using Koetter’s fast interpolation over Gaussian Elimination.

The reduction in complexity is more than two orders of magnitude over all rates for G-S decoding and

for K-V decoding of rates greater than 1/3.

18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−15

10
−10

10
−5

10
0

rate

ra
tio

N=255 over GF(256)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−15

10
−10

10
−5

10
0

10
5

rate

ra
tio

Roth−Ruckenstein/Interpolation complexity ratio for G−S

Roth−Ruckenstein/Interpolation complexity ratio for K−V

Fig. 6. Complexity of Roth-Ruckenstein overO
`

LC2
´

.

To confirm that the Roth-Ruckenstein factorization has a much less complexity than bi-variate poly-

nomial interpolation, we plot the ratio of their complexityin Fig. 6. The Roth-Ruckenstein factorization

requires at least 5 orders of magnitude less computation than interpolation over all rates for G-S decoding

and for K-V decoding of rates greater than 1/3.

E. Complexity control

We can reduce the complexity of the G-S algorithm by decodingto only a few errors beyond the

classical bound instead of the maximumτ . Fig. 7 shows the multiplicity required to decode up to the

desired error radiust. We see that the multiplicity has an exponential ramp as the error radius approaches

τ , but is still reasonable for a few errors beyondt. We can then compare the complexity of decoding the

RS code overGF (256) versus rate for the case oft + 1 andt + 10 errors as given in Fig. 8. We see that

for rates less than 1/3, the extra computation required to obtain an extra error correction is manageable.

There is the flexibility in choosing the appropriate G-S error radius according to the computing power

available in a system.

V. SIMULATION RESULTS

A. Comparing the performances of Reed-Solomon decoding techniques over a partial response channel

We simulate the performances of G-S, K-V, List-GMD, GMD, andthe classical bounded-distance (B-M)

Reed-Solomon decoding algorithms on the EPR4 channel with transfer functionh (D) = (1 − D) (1 + D)2.

19

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

t

m

RS(255,131)

t
classical

=62

τ
max

 = 72

Fig. 7. The required multiplicitym to decode to an error radiust for the RS (255, 131) code.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

τ−
t

N=255 over GF(256)

t+10
t+1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
10

10
20

10
30

rate

m
ul

tip
lic

at
io

ns
 p

er
 c

od
ew

or
d

G−S: t+10
G−S: t+1
B−M: t

Fig. 8. Comparing the complexity of G-S decoding to onlyt + 1 and t + 10 versus the B-M algorithm for a RS code overGF (256).

Our system model is shown in Fig. 9. It is a simple yet effective model that allows us to compare the

various RS decoding techniques. The matrixΠ∗ is what Koetter and Vardy referred to as thegeneralized

reliability matrix [14] and applies to channels with memory.

We first discuss the performance of G-S list-decoding. To evaluate the list-decoding performance, we

can run the actual algorithm or simulate the performance of aτ -error correcting code by declaring a

successful decode whenever the Hamming distance of the transmitted codeword and the received vector

is less than or equal toτ . The simulation assumes that the correct codeword is alwaysselected from

the list. Nielsen [15, Chapter 3, Section 3] showed that the probability of a list with multiple codewords

20

Π*

System Simulation Setup

Reed
Solomon
Encode

Partial
Response

Symbol
based BCJR

DecoderRS symbols

AWGN

Fig. 9. Partial Response system model to compare various RS decoding techniques.

becomes smaller as the code lengthn and alphabet sizeq increase. At code parameters of practical

interest in the magnetic recording setting, list-decodingwill almost always produce either a one-codeword

list or a zero-codeword list. For example, for a(255, 223, 32) RS codePr (|τ − consistent list| > 1) ≤

6.8427 × 10−11. Furthermore, the probability of choosing incorrectly from the list of candidates is also

small. For these reasons, the simulation results obtained through our assumption will closely approximate

the actual decoding performance. Fig. 10(a) compares the Word Error Rate (WER) of a(15, 7, 9) RS code

with 4 bits per symbol over the EPR4 channel with additive white Gaussian noise (AWGN.) Fig. 10(b)

compares the relative complexity of the algorithms over classical B-M decoding. The symbol reliabilities

are generated by the symbol-based BCJR algorithm describedin Section III. GMD provided a slight gain

of 0.15 dB over classical decoding with 5X the computation while G-S list-decoding provided about 0.5

dB gain over classical decoding with about 50,000X the computation. Further performance improvement

can be obtained by using soft-decision list-decoding. List-GMD provided about a 1 dB gain over GMD

because we apply sequential list-decoding instead of sequential classical decoding. The performance of

the K-V algorithm is affected by the total number of interpolation points used. In our simulation, we use

a total of 5n interpolation points, wheren is the length of the RS code. List-GMD provided about 1.2

dB gain over classical decoding with somewhere between 50,000X and 300,000X the computation and

K-V provided the same gain with about 2000X the computation.The complexity of the K-V algorithm

can be reduced by using less number of interpolation points but with a tradeoff in performance. The

hybrid Viterbi-BCJR algorithm can be used in place of the symbol-based BCJR algorithm to generate the

reliabilities of the most-likely symbols in the cases of GMDand List-GMD decoding.

To see that the probability of selecting an incorrect codeword is low, even for codes over small fields

such as theRS (7, 3) code, we plot the average list size and the incorrect selection ratio versus SNR on

the EPR4 channel in Fig. 11(a). An incorrect selection is counted when the correct codeword is in the

G-S generated list, but not selected as the output codeword.We see that the average list size decreases

with increasing channel SNR and that the probability of selecting the wrong codeword in the list is about

21

3 3.5 4 4.5 5 5.5 6
10

−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

W
E

R
RS(15,7) on EPR4 with SBCJR; K−V: S

pts
=75.

B−M
GMD
G−S
K−V (threshold)
K−V (actual)
List−GMD

3 3.5 4 4.5 5 5.5 6 6.5
10

0

10
1

10
2

10
3

10
4

10
5

10
6

SNR (dB)

R
at

io
 o

f d
ec

od
in

g
co

m
pl

ex
ity

RS(15,7) on EPR4 with SBCJR; K−V S
pts

=75.

List−GMD/B−M
G−S/B−M
K−V/B−M
GMD/B−M

Fig. 10. (a) Performance and (b) complexity comparisons of G-S, K-V, GMD, list-GMD, and B-M decoding techniques on the EPR4
channel.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

5

A
ve

ra
ge

 li
st

 s
iz

e

G−S decoding of RS(7,3) code on the EPR4 channel: 1200 codewords simmed

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.01

0.02

0.03

0.04

SNR (dB)

In
co

rr
ec

t c
od

ew
or

d
se

le
ct

io
n

ra
te

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

SNR (dB)

A
ve

ra
ge

 li
st

 s
iz

e
G−S decoding of RS(15,7) code on the EPR4 channel: 1200 codewords simmed

Fig. 11. Average list size and incorrect codeword selectionratio: (a)RS (7, 3) and (b)RS (15, 7) on the EPR4 channel.

4% or less. For theRS (15, 7), shown in Fig. 11(b), the average list size approaches 1 at anSNR above

5 dB and there were no incorrect codeword selections observed in decoding 1200 codewords over all

SNRs. This observation agrees with Nielsen’s calculation that for codes over large fields, the list size on

average will be 1 and the probability of selecting an incorrect codeword from the list will be small.

In Section II-B we stated a loose lower bound for List-GMD decoding. In Fig. 12, we plot the threshold

performance of K-V, List-GMD, and classical decoding for a(255, 223) RS code overGF (256). The List-

GMD curve is the calculated lower bound, while the K-V curve is obtained using the threshold condition

(14). The actual List-GMD performance will be above the curve provided in the figure. The actual K-V

22

5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

W
E

R
Threshold performance of RS(255,223) SBCJR on EPR4; KV: S

pts
=25500

B−M
GMD
G−S
K−V
List−GMD

5 5.5 6 6.5
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

SNR (dB)

R
at

io
 o

f d
ec

od
in

g
co

m
pl

ex
ity

RS(255,223) SBCJR on EPR4

List−GMD/BM
G−S/B−M
K−V/B−M
GMD/B−M

Fig. 12. (a) Threshold performance of List-GMD and Koetter-Vardy decoding of a(255, 223) RS code overGF
`

28
´

. To reduce simulation
time, the List-GMD performance is obtained using the lower-bound given in (11) and the K-V performance is obtained usingthe threshold
condition given in (14). (b) A comparison of the complexity ratios over classical B-M decoding.

performance will be below the curve shown in the figure. The threshold K-V curve indicates a 0.5 dB

gain and the List-GMD lower bound indicates a 0.75 dB gain over classical RS decoding. The complexity

ratios over B-M decoding is given in Fig. 12(b). We see that GMD decoding has a reasonable complexity

when compared to the B-M algorithm. However, G-S and K-V decoding of a codeword requires 10 orders

of magnitude more computations than B-M decoding. Moreover, the flexibility in multiplicity allocation

in K-V decoding allows it to have a much better performance complexity tradeoff because it can obtain a

larger gain at the same complexity as G-S. Because of the highG-S complexity, List-GMD decoding is

less attractive in decoding a high rate code than decoding the rate less than 1/2 code of Fig. 10. We can

also vary the number of interpolation used in K-V decoding tocalculate the performance and complexity

tradeoff as seen in Fig. 13. Using30n number of interpolation points is enough to guarantee a better

performance than G-S decoding.

B. Symbol-based BCJR versus bit-product BCJR

We compare the performance of a magnetic recording system that uses the bit-product reliability

measures to one that uses the symbol-wise APPs to make hard-decisions on the information symbols.

The simulation platform is shown in Fig. 14 and consists of the following steps:

1) Generate a stream of random numbers according to a uniformdistribution in the range of(0, 1).

Quantize each random number into one of2l equally spaced levels, where each level represents a

23

5 5.5 6 6.5
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

W
E

R
RS(255,223) SBCJR on EPR4

B−M
G−S
K−V (S

pts
=15n)

K−V (S
pts

=25n)
K−V (S

pts
=30n)

K−V (S
pts

=100n)

5 5.5 6 6.5
10

6

10
8

10
10

10
12

10
14

10
16

10
18

SNR (dB)

R
at

io
 o

f d
ec

od
in

g
co

m
pl

ex
ity

RS(255,223) SBCJR on EPR4

G−S/BM
K−V(S

pts
=100n)/B−M

K−V(S
pts

=30n)/B−M
K−V(S

pts
=25n)/B−M

K−V(S
pts

=15n)/B−M

Fig. 13. (a) Threshold performance of K-V decoding according to the number of interpolation pointsSpts used. (b) The relative complexity
ratio over B-M decoding.

BCJR

bit based)
(symbol oru u

AWGN

to bits
symbol Hard

Decision
APPPR

Channel

Fig. 14. Simulation setup

symbol inGF
(
2l

)
, thus generating a stream of random information symbolsu in GF

(
2l

)
.

2) Convert the symbol streamu into bits by mapping each symbol inGF
(
2l

)
into a block of l bits.

3) Encode the bits using the polynomial specified by the PR channel.

4) Corrupt the encoded bits by adding independent and identically distributed (i.i.d.) samples of

Gaussian random variables.

5) Compare the two BCJR-based approaches by

a) applying the conventional BCJR algorithm to obtain bit APPs and take the product to generate

the symbol reliability measures and make hard-decisions onthe information symbols (̂u) based

on the reliability measures, or

b) applying the symbol-based BCJR to generate the true symbol APPs and make hard-decisions

on the information symbols (̂u) based on the symbol APPs.

6) Compare the decisions (û) with the transmitted symbols (u) to calculate the symbol error rate (SER)

for each approach.

7) Convert the decisions (û) and the transmitted symbols (u) into bits and calculate the bit error rate

24

(BER) for each approach.

We plot the simulation results generated by the EPR4(1 − D) (1 + D)2 channel with 8 bits per symbol

in Fig. 15, the E2PR4(1 − D) (1 + D)3 channel with 8 bits per symbol in Fig. 16, and the EPR4 channel

with 4 bits per symbol in Fig. 17. Each of these figures has two sub-figures. The sub-figure (a) plots

the symbol error rate (SER) curves and the bit error rate (BER) curves generated by the symbol-based

BCJR approach and the bit-product BCJR approach. The sub-figure (b) plots the reduction in SER using

the symbol-based BCJR calculated by1 − SERSBCJR
SERbit-product

. We see that in all three scenarios considered, the

symbol-based BCJR produced the lowest SER and the (bit-based) BCJR produced the lowest BER.

It is interesting to note the effect that the trellis complexity and the symbol size have on the performance

difference between the symbol-based and (bit-based) BCJR algorithms. If we letS be the number of states

per stage andl be the number of bits per symbol, then the number of valid paths per symbol will beS

independent ofl and the total number of possible paths (both valid and invalid) per symbol will beSl. We

therefore would expect the SER performance improvement in using the symbol-based APPs to increase

with increasing trellis complexityS and increasing bits per symboll. The effect of trellis complexity is

verified experimentally by comparing the relative SER plotsin Fig. 15(b) and Fig. 16(b). Symbol-based

BCJR led to a maximum of 7% reduction in SER over the bit-product BCJR on the EPR4 channel with an

8-state trellis and led to a 10% reduction in SER on the E2PR4 channel with a 16-state trellis. The effect

of symbol size is confirmed by comparing the relative SER plots in Figures 15(b) and 17(b). Applying

symbol-based BCJR to 4-bit symbols led to a maximum 5% reduction in SER and applying the algorithm

to to 8-bit symbols led to a maximum of 7% reduction in SER. Thus, symbol-based BCJR can easily

provide a better SER performance by simply treating the trellis in a different manner.

Finally, we apply the reliability information generated bythe two approaches to the GMD [7] decoder

and the K-V decoder. We again refer the readers to [8], [13], [14] for details. For the K-V decoder,

instead of simulating the actual decoding algorithm, we used the simple threshold condition discussed in

Section II-C. The simulation output generated by using a(255, 223) Reed-Solomon code on the EPR4

channel is plotted in Fig. 18 for GMD decoding and K-V decoding. In GMD decoding, which uses only

the reliabilities of the most-likely symbols, symbol-based BCJR led to a 0.1 dB SNR gain at a WER of

10−2. In K-V decoding, which uses the reliabilities of all field symbols, symbol-based BCJR achieved a

0.4 dB SNR gain at a SER of10−2.

25

−6 −4 −2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

SNR (dB)

E
rr

or
 R

at
e

Symbol−based BCJR for EPR4 channel in AWGN, 8 bits/symbol

SER symbol−based
BER symbol−based
BER bit−based
SER bit−based

−6 −4 −2 0 2 4 6 8
0

0.02

0.04

0.06

0.08

SNR (dB)

R
ed

uc
tio

n
in

 S
E

R

1−SER
SBCJR

/SER
bit−product

SER

BER

Fig. 15. (a) SER and BER for the EPR4 channel, 8 bits/symbol.Note that to highlight the difference in the error rate curves, we have
plotted the curves in linear scale.(b) Reduction in SER using symbol-based BCJR.

−6 −4 −2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

SNR (dB)

E
rr

or
 R

at
e

Symbol−based BCJR for E2PR4 channel in AWGN, 8 bits/symbol

SER symbol−based
BER symbol−based
BER bit−based
SER bit−based

−6 −4 −2 0 2 4 6 8
0

0.02

0.04

0.06

0.08

0.1

0.12

SNR (dB)

R
ed

uc
tio

n
in

 S
E

R

1−SER
SBCJR

/SER
bit−product

SER

BER

Fig. 16. (a) SER and BER for the E2PR4 channel, 8 bits/symbol.(b) Reduction in SER using symbol-based BCJR.

Symbol-based BCJR generates more accurate symbol reliabilities than taking the product of the bit-

reliabilities. Applying symbol-based BCJR to soft-decision decoding of RS codes will lead to a lower

probability of decoding error than applying the bit-product BCJR.

VI. CONCLUSIONS

We have discussed soft-decision Reed-Solomon decoding algorithms and their application in a magnetic

recording channel. The List-GMD and the Koetter-Vardy algorithms can utilize reliability information

provided by the channel. The soft-decoding algorithms outperform the classical hard-decoding algorithm

26

−6 −4 −2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

SNR (dB)

E
rr

or
 R

at
e

Symbol−based BCJR for EPR4 channel in AWGN, 4 bits/symbol

SER symbol−based
BER symbol−based
BER bit−based
SER bit−based

−6 −4 −2 0 2 4 6 8
0

0.01

0.02

0.03

0.04

0.05

0.06

SNR (dB)

R
ed

uc
tio

n
in

 S
E

R

1−SER
SBCJR

/SER
bit−product

SER

BER

Fig. 17. (a) SER and BER for the EPR4 channel, 4 bits/symbol. (b) Reduction in SER of using symbol-based BCJR.

5 5.5 6 6.5
10

−3

10
−2

10
−1

10
0

SNR (dB)

W
or

d
E

rr
or

 R
at

e

GMD performance of RS(255,223) on the EPR4 channel

SBCJR
bit−product

5 5.5 6 6.5
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

W
or

d
E

rr
or

 R
at

e

K−V performance of RS(255,223) on the EPR4 channel with S
pts

=25500

SBCJR
bit−product

Fig. 18. Performance comparison of GMD and K-V decoding using the reliability information produced by the symbol-basedBCJR
algorithm versus the product of bit reliabilities.

at the cost of added complexity. We can manage the performance-complexity tradeoff in List-GMD by

limiting the decoding radiusτ and in Koetter-Vardy by controlling the number of interpolation points.

We presented a symbol-based BCJR algorithm that calculatesthe symbol-wise APPs forl-bit symbols.

Our method is an extension of the original BCJR algorithm anduses the same bit-based trellis. The symbol-

based BCJR technique can be used to generate symbol-wise APPs to be used by soft-decision decoding

algorithms for algebraic block codes overGF
(
2l

)
. Simplification of the symbol-based BCJR algorithm

can be made when applying it to a binary ISI channel. We also introduced the hybrid Viterbi-BCJR

algorithm which can be used when only the reliability of the most-likely symbol is desired. Simulations

27

over a partial response channel show that symbol decisions made by using the symbol-wise APPs yield a

lower word error rate (WER) than the symbol decisions made byusing the product of the bit reliabilities.

VII. A CKNOWLEDGMENT

Mike Cheng and Paul Siegel would like to thank Henry Pfister for discussions on the symbol-based

BCJR.

28

REFERENCES

[1] A. M. Taratorin, Characterization of magnetic recording systems: a practical approach. Guzik Technical Enterprise, 1996.

[2] M. Öberg, Turbo Coding and Decoding for Signal Transmission and Recording Systems. PhD thesis, University of California, San

Diego, La Jolla, CA, USA, April 2000.

[3] P. Elias, “List decoding for noisy channels,” tech. rep., MIT, 1957.

[4] J. M. Wozencraft, “List decoding,” tech. rep., MIT, 1958.

[5] M. Sudan, “Decoding of Reed-Solomon codes beyond the error correction bound,”J. Complexity, vol. 13, pp. 180–193, Sept. 1997.

[6] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon and Algebraic-Geometry codes,”IEEE Trans. Inform. Theory,

vol. 45, pp. 1757–1767, Sept. 1999.

[7] G. D. Forney, Jr.,Concatenated Codes. Cambridge, MA, USA: M.I.T. Press, 1966.

[8] R. Koetter and A. Vardy, “Algebraic soft-decision decoding of Reed-Solomon codes,” inProc. IEEE Int. Symp. Information Theory,

(Sorrento, Italy), p. 61, IEEE, June 2000.

[9] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for minimizing symbol error rate,”IEEE Trans.

Inform. Theory, vol. 20, pp. 284–287, March 1974.

[10] P. Hoeher, “Optimal subblock-by-subblock detection,” IEEE Trans. Commun., vol. 43, pp. 714–717, Feb. 1995.

[11] M. K. Cheng, J. Campello, and P. H. Siegel, “Soft-decision Reed-Solomon decoding on partial response channels,” inProc. IEEE

Global Telecom. Conf., vol. 2, (Taipei, Taiwan, ROC), pp. 1026–1030, IEEE, Nov. 2002.

[12] M. K. Cheng,Algebraic soft-decision Reed-Solomon decoding techniques for high-density magnetic recording. PhD thesis, University

of California, San Diego, 2004.

[13] R. Koetter and A. Vardy, “Algebraic soft-decision decoding of Reed-Solomon codes,” inProceedings of the 38th Annual Allerton

Conference on Communication, Control, and Computing, (Monticello, IL, USA), pp. 625–635, Oct. 2000.

[14] R. Koetter and A. Vardy, “Algebraic soft-decision decoding of Reed-Solomon codes,”IEEE Trans. Inform. Theory, vol. 49, pp. 2809–

2825, Nov. 2003.

[15] R. R. Nielsen, “Decoding AG-codes beyond half the minimum distance,” Master’s thesis, Danmarks Tekniske Universitet, Copenhagen,

Denmark, Aug. 1998.

[16] V. Olshevsky and M. A. Shokrollahi, “A displacement approach to efficient decoding of algebraic-geometry codes,” in Proceedings of

the 30th annual ACM Symposium on Theory of Computing (STOC), pp. 235–244, May 1999.

[17] T. V. Souvignier,Turbo Decoding for Partial Response Channels. PhD thesis, University of California, San Diego, 1999.

[18] R. J. McEliece, “The Guruswami-Sudan decoding algorithm for Reed-Solomon codes.” to appear in the JPL publication: IPN Progress

Reports; http://www.systems.caltech.edu/EE/Faculty/rjm/, April 2003.

[19] J. L. Massey and N. von Seeman, “Hasse derivatives and repeated-root cyclic codes,” inProc. IEEE Int. Symp. Information Theory,

(Ann Arbor, USA), IEEE, 1986.

[20] W. J. Gross, F. R. Kschischang, R. Koetter, and P. G. Gulak, “A VLSI architecture for interpolation in soft-decisionlist-decoding of

Reed-Solomon codes,” inProceedings of the 2002 IEEE Workshop on Signal Processing Systems, (San Diego, CA), pp. 39–44, IEEE,

Oct. 2002.

[21] R. M. Roth and G. Ruckenstein, “Efficient decoding of Reed-Solomon codes beyond half the minimum distance,”IEEE Trans. Inform.

Theory, vol. 46, pp. 246–257, Jan. 2000.

[22] R. E. Blahut,Algebraic Codes for Data Transmission. Cambridge University Press, 2003. ISBN: 0-521-55374-1.

